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1. I n t r o d u c t i o n  

The notion of Radon transform on R 2, introduced by Radon [It] and further 

studied by John [J], both in the case of lines in the plane, has been extended to 

symmetric spaces, in particular to the hyperbolic disk, by Helgason [H]. There 

are two ways to extend the Radon transform to the disk, because there are 

two natural analogues of lines in hyperbolic geometry. The first is to geodesics, 

that is, circles in the hyperbolic disk which are orthogonal to the boundary. The 

corresponding integral transform is called the X-ray transform, in the terminology 

of [H]. The second is to horocycles, which give rise to the hyperbolic Radon 

transform. 

Many recent papers have revealed a remarkable relationship between the hy- 

perbolic disk and infinite trees (graphs without loops) and studied this analogy. 

When the hyperbolic disk is regarded as a homogeneous space under the action 

of its automorphism group PSL(2, R), it is natural to compare it with a homo- 

geneous tree, a tree each of whose vertices meets the same number of edges. On 

the other hand, when attention is focused upon real analysis or probability, the 

discrete counterpart of the disk is a generic infinite tree without any homogeneity 

conditions. A large part of the classical theory of Radon transforms fits within 

real analysis, and in this spirit X-ray transforms on trees have been studied in 

[BCCP], [CCP], [CC]. On the other hand, horocyclic Radon transforms have been 

investigated only on homogeneous trees: cf. [BP], [BFP]. These papers make use 

of radial functions and need a group of 'rotations' acting transitively on the circles 

around a fixed vertex of the tree, which is therefore assumed homogeneous. 

The present paper considers the horocyclic Radon transform on a general tree 

T. After describing the geometry of horocycles in Section 2, we prove in Section 3 

that the Radon transform is injective on LI(T), and give an expression for its 

inverse in terms of integral operators over the boundary of the tree. This general 

inverse is not explicit: in order to obtain explicit inversion formulas, we follow 

the usual procedure of introducing a dual Radon transform R* (Section 4) and 

seeking the inverse of R*R. This method does work for homogeneous trees, as 

proved in [BFP]: in Section 5 we give a simplified (but less elegant) proof of 

such a special case, which should hopefully adapt to the general setting. We are, 

however, unable to compute the inverse of R*R for non-homogeneous trees. So 

we prove a different inversion formula (Section 6), which does not factor through 

the dual transform. This formula is new even in the homogeneous case, where it 
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assumes a remarkably simple expression. 

365 

2. H o r o c y e l e s  

Let T be a connected tree. To avoid trivialities we shall henceforth assume that 

each vertex touches at least three edges, although most of the definitions and 

results set forth in the sequel extend to the general case. By a p a t h  we mean 

a sequence of vertices [v0 ,v l , . . . ]  where vj .., Vj+l-- that  is, vj and vj+l are 

neighbors--and vj ~ vj+2 for all j .  Unless otherwise specified, such a sequence 

will be assumed infinite. The boundary of T is the space l~ of ends,  the classes of 

paths under the equivalence relation ~_ generated by the unit shift: [v0, v l , . . .  ] -~ 

[vl,v2,. . .] .  If we fix a vertex u, then f~ can be identified with the set of paths 

beginning at u. Each end w induces an orientation on the edges of T: an edge 

Iv, w] is positively oriented if there exists a representative path in w which starts at 

v and contains w. For every w and every pair of vertices v, w define the h o r o c y c l e  

i n d e x  ~ ( v ,  w) as the number of positively oriented edges (with respect to w) 

minus the number of negatively oriented edges in the path from v to w (which is 

unique since T is a tree). For n E Z, the set 

h,,(n,w) = {w E T: ~,~(u,w) = n} 

is the h o r o c y c l e  of index n through w with respect to u. The d i s t ance  d(v, w) 

between the vertices v, w is the length of the finite path between them. 

Remark 2.1: The vertices of a horocycle all lie at even distance from each other. 

II 

It is immediately seen that the family of horocycles through a fixed w does not 

depend on the choice of the reference vertex u, but indices do: it would therefore 

be preferable to express horocycles in terms of paths instead of ends and vertices. 

If p = [v0, v l , . . .  ] is a path, and w a vertex, let d(w,p) = mini>0 d(w, vi). Set 

hp = {w e T: d(w, vo) = 2d(w,p)} : 

that is, w belongs to hp if the nearest vertex of p is exactly h a l f w ~ h e t w e e n  w 

and v0 (see Figure 2.1, where the vertices of hp are circled: only a portion of the 

tree is depicted). Then hp is the horocycle hvo(O,w), where w is the equivalence 

class of p. To see this, consider another equivalence relation on the set of paths: 
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if p = [v0, v l , . . .  ], p '  = [v~, v~ , . . .  ], we stipulate tha t  p ~ p'  if vj = v} for every 

sufficiently large j .  In this case p _~ p ' ,  so ~ is strictly finer than  ~-. For the 

sake of  completeness, we now prove the simple fact tha t  h~ depends only on the 

Z-equivalence class of p. 

FIGURE 2 .1 .  

PROPOSITION 2.2: Let p, p' be paths. Then hp = hp, i f  and only i f  p ~- p'. In 

particular, given a path  p and u E hp there exists a unique path  p' starting at u 

and such that  hp = hp,. 

' exactly f o r j  > n. Let u E hp and  assume Proof" Assume first tha t  vj -- vj 

tha t  d(u ,p)  = k, so that  the closest vertex of p to u is Vk and their distance is 

k. If  k > n, then vk = v~ is also the closest vertex of p'  to u, thus u E hp,. 

' and their distance is Whereas  if k < n, then the closest vertex of u to p' is vn, 

= ' and v~, whence v E h r .  k + (n - k) n, which is also the distance between v,, 

Next assume that  hp = hp,. Let k = d(vo,v'o)/2 (recall Remark  2.1): since 

vo, V'o e h ,  = hp,, we have d(vo,p') = k = d(v'o,p). Therefore u, the vertex which 

lies halfway between v0 and v~, belongs to bo th  p and p' ,  hence Vk = u = v~, 

while vj ~ p'  and v} ~ p for every j < k. Let m be the smallest index larger 

than  k such that  Vm ~ p'. Let w be a vertex at distance m from p, such tha t  the 

closest vertex of p is v, , :  then w E hp. Now, v,,, lies between w and the vertex 
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' which is therefore the closest of p '  to w, and d(w,p')  = m + 1. But  t t m _  1 = V m _  1 ) 

d(w, v*o) = (m + 1) + (m - 1) = 2m # 2d(w,p'),  hence w ~ hp,, which contradic ts  

the a s sumpt ion  hp = hp,. Thus  no such m exists, whence v I = v~ for every j > k. 
| 

Let p = [v0, vt . . . .  ], p -  = [vo ,v- t , . . .  ] be  pa ths  s ta r t ing  at  the same  ver tex  v0 

but  o therwise  disjoint. For n E Z, define h(n,p)  = h[v.,~,+,,...]. Obviously  for 

n > 0 this depends  only on n and ( the  m-equivalence class of) p. For n < 0 this 

appa ren t ly  depends  on the choice of p - ,  bu t  Proposi t ion  2.2 shows tha t  it does 

not .  

Thus  we have  

PROPOSITION 2.3: There is a one-to-one correspondence between Z x f / a n d  the 

set 7-I of horocycles. This correspondence is not unique and depends on the choice 

of  one vertex. 

Proof." Fix a vertex u. To any end w and any integer n we can associate the 

horocycle h , (n ,  w) = h(n,  p), where p is the unique representa t ive  p a t h  o fw  which 

s ta r t s  at u. This  m a p  is clearly injective. To see tha t  it is also surjective,  let hp 

be a horocycle  with p = Iv0, v l , . . .  ], and let p '  be the p a t h  beginning at  u and  

represent ing  the  same end. Then  hp = h(n,p') ,  where n = 2d(u ,p)  - d ( u ,  vo). 
| 

R e m a r k  2.4: Given a p a t h  p = Iv0, v~ , . . .  ], a ver tex u is in the horocycle  h(n,p)  

for a unique value of n, namely  ap(U) = d(u, vo ) -2d (u ,p )  (which equals a~(v0, u) 

i fw is the _~-equivalence class of p). Hence T is the disjoint union of the horocycles 

h(n,p)  for n E Z. 

De~nition 2.5: Let u, v be neighboring vertices. The  set 

S(u ,v )  = {w E T: d(w,u)  = d(w,v)  + 1} 

is called a s e c t o r .  For general  u, v set 

v) = {w E T: d(w, = d(w,,,) + a0 , v)}, 

and notice tha t  S(u, u) = T, while S(u, v) = S(u',  v), where u'  is the neighbor  of 

v lying be tween  u and v if u # v. 

On the o ther  hand,  we define a w e d g e  as the set 

wp = {w T: .p(w) _> 0}, 
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where p is a path. So a wedge consists of all vertices w whose distance from 

v0 is not smaller than twice the distance from/r-- in  particular, Wp contains p 

(see Figure 2.2: the shaded region is the sector S(u, vo), while the vertices of the 

wedge Wp are circled). By Proposition 2.2, Wp only depends on the Z-equivalence 

class of p, i.e., on the horocycle h v. II 

FIGURE 2 .2 .  

Notice the disjoint union decompositions 

(2.1) T = S(u,v)US(v,u) 

(2.2) T = {u} U U S(u,v) 

(2.3) Hip= U h(j,p) 

for every u, v E T with u ,-~ v, 

for every u E T, 

for every path p. 

PROPOSITION 2.6: A sector can be decomposed into a disjoint union of horocy- 

cles. 

Proof: By (2.3) it will suffice to show that a sector S(u, v), with u -,, v, can be 

decomposed as a disjoint union of wedges. Take a path p = [v0, v l , . . .  ] such that 



Vol. 78, 1992 HOROCYCLIC RADON T R A N S F O R M  ON TREES 369 

v0 = v and Vl # u. Then Wp C S(u, v). We shall prove that 

(2.4) S(u, v) = Wp U [,.J S(v, w) (disjoint unions). 
,~p(w)=-I 

w # u  

Observe that the distance from u of each sector on the right-hand side is larger 

than that of S(u, v). 
If z • S(v,w) for some w # u with top(w) = - 1 ,  then necessarily the path  

connecting z to p contains w, hence 

d(z,p) = d(z, w) + d(,,,,p), 

d(z, ,,) = d(z, w) + d(w, v), 

whence ~p(z) = ~p(w) - d(z, w) <_ -1, and z ~ Wp. 

Conversely take z • S(u, v) such that tOp(Z) < -1 .  It is easy to see that the 

index top increases by one at each step when moving from z towards p. Call w 

the vertex for which ~p(w) = -1 ,  and observe that w lies on the path between v 

and z, i.e., z • S(v, w). 

Now (2.4) can be used to prove by induction that for every n > 1 there exist 

vertices who,. . . ,  w,,,j, • S(u, v) at distance n from v, and paths pn,1, . . .  ,pn,k. 

such that 

km j ,  

S(u, v) = U Wp.~,, U U S(u, wn,,) (disjoint unions). 
m = l  i=1 i=1 

Since the distance of S(u, w,,,i) from v tends to infinity with n, in the limit we 

have 
oo k m 

S(u,v) = U U Wp,~., (disjoint unions). I 
rn----1 i=1 

3 .  T h e  inverse  R a d o n  t r a n s f o r m  a s  a n  i n t eg ra l  o p e r a t o r  

The (ho rocyc l i c )  R a d o n  t r a n s f o r m  R on T is defined as follows: if f E LI (T)  

then R f  E L~(7"t) is given by 

Rf(h) = ~ f(v) for every horocycle h • 7"/. 
v E h  
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THEOREM 3.1: The Radon transform is injective. 

Proof." Suppose R f  = 0 on 7~. For any pair of neighboring vertices u, v, Propo- 

sition 2.6 yields the disjoint union expression S(u,v)  = UjEN hi, for suitable 

horocycles h i. Then the integral of f over a sector vanishes: 

wES(u,v) jEN wEhj jEN 

Now it is enough to expand ~wET f (w)  in a similar way, using the disjoint union 

decompositions (2.1) on one side and (2.2) on the other side, to get f (u)  = O. 

I 

The same argument can be used to prove a more general statement (the sup-  

p o r t  theorem): if R f  vanishes on every horocycle which does not intersect a 

fixed subset K of T, then f vanishes outside K (cf. [BCCP, Theorem 1.3] for the 

X-ray transform case). The proof of Theorem 3.1--along with that of Proposi- 

tion 2.6--also provides an algorithm for inverting the Radon transform. Observe 

that the above proof (as well as the inversion formula given in Theorem 6.1 be- 

low) only uses horocycles which have nonnegative index with respect to a fixed 

reference vertex. 

We shall now express R -1 as an integral operator. The space 7~ is equipped 

with a natural Borel structure, induced from the product topology of Z x f~ via 

the bijection of Proposition 2.3. Recall that the topology of • is defined as follows 

[C]: the sequence of ends (wj) tends to the end w if there exist paths pj E wj for 

each j E N and p E 0J, all sharing the same initial vertex, such that pj coincides 

with p for a number of steps dj -~ oo. Denote by 7/w the set of horocycles which 

contain w E T, and by 7 ~  the subset of ~ ,  of those contained in S(v, w) (in 

particular, 7/~ = 7/v). 

THEOREM 3.2: For every v E T there exists a (signed) Borel measure t/o on 

such that 
1 i f v = w ,  

o i fv#w.  

I[ {uv: v E T )  is a family of such measures then 

f(,) =/~ Rf(h)  dv~(h) for every v E T. 

Proof." It is clear that a family {vv} of measures that satisfy the above property 

inverts R. Indeed, it is enough to restrict attention to f = 6w, the Dirac function 
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at w (i.e., the characteristic function of the set {w} in T), for each w E T. In 

this case R f  = Xn~,, the characteristic function of 7"(w in 7"/, and 

/~t R f  dv,, = / X n . ,  &:,, = u,,(7"lw) = &,,(v) = f(v) for every v e T. 

The existence of such a family of measures is less obvious, because the sets 

{7"/~: v E T} are not disjoint. Fix v E T. It is easy to see that  7"/~ nT-lw is empty  

if d(v, w) is odd. Thus we can set t:~ = 0 on every Borel subset of 

U ~'~w- 
w: d(v,w) is odd 

On the rest of 7"/we shall construct uv on each Hw by induction on the (even) 

distance d(v, w), start ing with 7"/~. Let u,~ln~ be any Borel measure of mass 1 

on 7-/~, so that  v~(Hv) = 1. Label all vertices of T at even distance from v as 

v0 = v, Vl, v2, . . .  in a way that  d(v, vj) is nondecreasing, and assume that  u~ 

has already been constructed on H(j) = Uj<_, 7-/~j and satisfies the condition 

1 i f j  = 0, 

Vv('H~i)= 0 i f 0 < j _ < n .  

To perform the induction step observe that  7-g~i+ ~ \ 7"/(i ) is nonempty, because it 

contains 7"f~j+ . So we can set u,l~f~j+~\~fcj ) to be any Borel measure on 7"(.¢+~ \ 

7f(j) of mass -u~(7"foi+ ~ fl 7"/(i)), and consequently 

= n n ¢ j ) )  + \ = 0. I 

4. T h e  d u a l  R a d o n  t r a n s f o r m  

Let v E T, and for each vertex w let qw + 1 be the number  of neighbors of w. A 

probabili ty measure Pv on fl which arises naturally (cf. [BCCP, §2]), and which 

reduces to the unique rotation-invariant one if T is homogeneous, is determined 

by 

pv (a~)  = 1 __1 if v ¢ w, 
q~0 + 1 j=l qvj 

where [vo=v, v l , . . .  ,vn=w] is the finite pa th  from v to w, and ~ ,  is the space 

of ends determined by paths contained in S(v, w). If ~ '  is a Borel subset of 
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~t, the quantity p~(~*) expresses the probability that a particle starting from 

v eventually hits ~1 ~. It is assumed that the particle follows a random path, at 

each move choosing any of its neighboring vertices except the previous with equal 

probability. The corresponding positive Borel measure tt~ on 7"/= Z × gt is the 

product of the counting measure on Z and the above-defined measure p~ on ~. 

PROPOSITION 4.1: We have: 

(4.1) i , , ( n )  = ~ ,  

(4.2) #~(7-/') = p~(~') for every w E T and BoreJ subset U' of T"lw, 

where ~t is the set of ends associated to the horocycles in ~t ,  and 

(4.3) ~ ( ~ . , )  = 0 for every w e a,  

where U. ,  = { h ~ ( , , ~ ) :  n e Z} is the set ofhorocycles through the end ~. 

particular, for every w E T, 

p~(7-/w) = 1, 
~) , ~ ( ~ )  = p~(aw).  

Proo~ F o ~ u l ~  (4.1) holds since p~(a)  = 1 and ~ = Z × a = U . e z { - }  × a .  

To prove (4.2) observe that the projection of 7"/w onto the second factor in 

Z × ~ is one-to-one (in other words, there is only one horocyele in 7"/w which 

passes through each given end of T), and recall that the first factor is endowed 

with the counting measure. 

A single end w has p~ measure zero (because qw >_ 2 for every w E T): thus 

from 7"/., -- Z x {w} = Unez{n} x {w} we get (4.3). I 

Remark 4.2: The proof of Theorem 3.2 can be easily adapted so that the measure 

u~ is absolutely continuous with respect to p. ,  for each v E T. I 

The dua l  R a d o n  t r a n s f o r m  R* on T is defined in terms of the chosen family 

{pv: v E T} as follows: if ¢ E L°°(U) then R*¢ E L°°(T) is given by 

R*¢(v) = [ .  ¢(h)dg~(h) for every v E T. 
v 

This transform is the adjoint of R in the sense that 

wET 
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Observe that R* only involves, for each v, the restriction of pv to 7"/v. 

The operator R*R therefore maps L~(T) to L°°(T). In order to find an integral 

representation for it, we first compute it on Dirac deltas. Given vertices v, w, we 

have 

J i g  v 

This quantity vanishes if v and w are an odd distance apart,  because in this case 

~ and 7"/w are disjoint by Remark 2.1. If the distance is nonzero and even, let 

[vo=V, Vl , . . .  ,v2n=w] be the finite path from v to w, and observe that the end 

w corresponding to each horocycle h in 7"(~ f3 7~w must belong to f~v fl Q w = 

flW. \ f~v In fact the orientation of the edges [vi, Vj+l] must be positive with Vn+l " 

respect to w for 0 < j < n, and negative for n _< j < 2n, in order for the index 

tc,~(v, w) to be zero. Therefore 

q l j r  t m 1 

n Pv(~v N 7-(w) = pv(f~n ) -pv(f~v +t) = (qvo + 1 ) H i = ,  qvi 

(for d(v,w) nonzero even). Finally p~(7"lv) = 1, as remarked before. For an 

arbitrary f E LI(T) ,  we thus have 

PROPOSITION 4.3: The operator R 'R:  LI(T) --* L~(T)  has the integra/repre-  

sentation 

R*RI  = Z ¢ ( . , w ) y ( w )  forevery f E L'(T),  
wET 

where tile kernel ¢ is given by 

1 i f v = w ,  

¢(v, w) = p~(Hv f3 7-lw) = 0 if  d(v, w) is odd, 

q~ - n 1 if  d(v,w) = 2n > O. 
(qvo + 1) l-[j=1 qvj 

5. G e o m e t r i c  invers ion  in the  h o m o g e n e o u s  s e t t i n g  

Let us examine the operator R*R and its invertibility in the homogeneous case. 

The results in this section are adapted from [BFP]. 

Let T be homogeneous of degree q + 1 > 3, i.e., each vertex w has exactly 

q,~ + 1 = q + 1 neighbors. The tree T can in this case be identified with a group, 

namely the free product of q + 1 copies of Z2. By Proposition 4.3, R*R acts as 
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the convolution operator with kernel 

Isr. J.  Ma th .  

1 

¢(v,w)= Oq_l 
~q~C iyq- 

i f l )  ----- W, 

if d(v, w) is odd, 

if d(v, w) = 2n > O. 

Note that ¢ actually depends only on d(v,w). Letting v be the vertex that 

represents the identity element of the group, the convolver can be regarded as 

the function if2 = ~-']~:°=0 c,,x2n on T, where Xm is the characteristic function 

(on T)  of the set C(v, m) of vertices at distance m from v, and the coefficient 

c,, equals ¢(v, w) for d(v, w) = 2n. Naturally * is radial (with respect to v), 

that is, constant on C(v, m) for each m. Because C(v, m) consists of exactly 

(q + 1)q m-I vertices if m > 0, one easily verifies that q E L2+C(T) if and only if 

c > 0. In particular, R*R is not bounded as an endomorphism of L 1 . Its inverse, 

therefore, must be found on a larger L p. However, R*R is bounded from L 1 to 

L 2+c for every e > 0. A bounded inverse J :  L 2+* ~ L I would yield a more 

geometric and explicit inversion formula than the general integral representation 

of Theorem 3.2: if ¢ = R f,  we would recover f as JR*¢. Unfortunately no such 

bounded J exists: since R*R is a right convolution operator, J would have to 

commute with the left action of Aut(T),  hence would be the convolution on the 

right with a radial function q~. If the range of J were in L 1 , the convolver • 

would also have to be in L 1. We shall compute O and show that it belongs to 

L 1+~ only for e > 0. 

On the other hand, R*R need only be inverted on its range R*R(LI). A 

thorough treatment of the problem is given in [BFP, Theorem 5.2], by means 

of the spherical Fourier transform and a Paley-Wiener theorem. These tools are 

peculiar to the homogeneous setting, but turn out not to be necessary for the 

core of the argument, which might possibly be adapted to the general case. 

Since R*Rf = f*ff2, let us first look for a function (I) which is a right convolution 

inverse for q ,  i.e., is such that q * (I) = /f~. Incidentally, observe that q _> 0, 

whence (I) must take values of both signs, and the identity above is the result of 

cancellations. The series involved, however, converges absolutely, which we see 

once we prove that • E L 1+~. We, of course, make (I) vanish on vertices odd 
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distances from v. It is easy (though tedious) to obtain 

3 q + l  
2-~ ~ 1-) if v = w, 

¢(w)  = 0 if d(v, w) is odd, 

q(q - 1) 
2 (q+  1)q 2" ifd(v,w) = 2n > 0; 

as anticipated, ¢ E L 1+' for e > 0. Now, the convolution of f E L 1 , q' E L 1+c, 

q2 E L 2+' is associative, being given by absolutely convergent series: this yields 

the desired inversion formula 

R*Rf *~ =( f  , ~ ) , c b =  f , ( ' ~ , ~ ) =  f ,~,,= f. 

It would be nice to extend this 'geometric' approach to the non-homogeneous 

setting. Closer to the spirit of integral geometry, we should try to reconstruct 

the function f at each vertex v from its transform ff = Rf  by a two-step al- 

gorithm, in analogy with the approach of [BFP] in the homogeneous case and 

with the method developed in [BCCP] to invert the X-ray transform. The first 

step would consist of integrating ¢ over the set of horocycles through v, that 

is, of applying the dual operator R*. The result is the function g = R*Rf = 
~-'~,~T ¢ ( ' ,  w) f(w). The second step would consist of recovering f from g, that 

is, of inverting the summation operator with kernel ¢ by means of the summation 

operator with some kernel ~, which would thus have to satisfy 

E ( ( u ' v ) ¢ ( v ' ' ) = g =  for e v e r y u E T .  
v ET  

We cannot presently determine such ( in the general non-homogeneous case. 

We shall provide in the next section, however, a different inversion formula, 

which does not factor through the action of R*, yet whose expression in the 

homogeneous case is intriguingly simple. 

6. An  explicit  inversion formula for the Radon  transform 

We shall prove a recursive inversion formula for R which is not geometric in the 

sense of the previous sections. This formula expresses the value of Rf  at a vertex 

v as a linear combination of suitable averages of Rf  over the sets of horocycles 

which pass through the generic vertex w and are contained in the sector S(v, w). 
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The coefficients of this linear combination grow fast; we shall nevertheless be able 

to establish the validity of our inversion formula for all f E LI(T). 
As usual, let v be a fixed vertex, and, if w E T is at even distance 2n from v, 

we denote the finite path from v to w by [vo=v, vl,... ,v2,=w]. Recall that  each 

vertex of T has at least three neighbors. 

THEOREM 6.1: The following inversion formula holds for f E LI(T): 

E A T /  l:lf(h)dpv(h), f ( v ) =  
w: d(v,w) even "/'/vu' 

where AT, for even d(v, w), is given recursively by 

1 ° ifw =v, 
n - - I  n- -1  

AT= A~2~(1-q~-+ ' )  H q~.+, i f w # v .  
= j = k + l  

Remark 6.2: Assume d(v, w) is even. Setting 

1 i f w = v ,  

B w =  A w - A v , . _ ,  i f w # v ,  

that is, Aw = Y]'k=o Bv2~, we get a simplified recursive expression: 

Bw = B ~  q~.+j i f w  # v. 

k=0 j=k  

If a E {0, 1}" is such that a,, = 0, and if 1 < j < n, set 

g(j, a)  = j - 1 + rain i. 
i>_j 

a i ~ O  

In terms of this notation we get 

1 

aE{O,1}'* 
with a . = O  

and thus Aw is given in closed form by 

n 

A" = I + E(-1)k E 
k=l aE{O,l}h 

with ~k=0 

n 

(-i?,,l II 
j = l  

i f w  ~ 12, 

i fw  # v, 

k 

(-1)l°J II 
j = l  
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The first few Aw = A~2. are (setting qj = qvi for brevity): 

A~0 = 1, 

A~ 2 = 1 -  qh 

Av4  = 1 - ql  + q lqa  - q2qa,  

A v e  = 1 - ql + q lq3  - q2q3 - q lqaq5  + q2qaq5 + q lq4q5  - qaq4qs ,  

A v s  = 1 - ql  + q lqa  - q2q3 - q lqaq5  + q2qaq5 + q lq4q5  - q3q4q5 

+ qlqaqsq7 - q2qaqsq7 - qlq4qsq7 + q3q4qsq7  

- q lqaqeq7  + q2q3qeq7 + q l q s q e q 7  - q4qsq6q7 

(note that Aw does not depend on qv or qw). 

LEMMA 6.3: A necessary condition for pv(7"[~ n~w) to be nonzero is that d(v,  u) 

and d(v,  w)  be both even or both odd. More  precisely, i f  d(v,  w)  = 2n we have 

p,,(7"L,) = I i f  u = w = v, 

2n--1 

~(~.) = __1 11 _1 i[~ = w#~, 
qv0 + 1 ~'~ qvi 

~,,,(~,~ n uw)=, 
#~(~/.,,  O ~ , , , ) = ( 1 - q , , l + . )  1 "~i-1  1 i f u - - v 2 t # w ,  

j=l  qv--~- 

p v (  O ) = 0 otherwise.  

This can be proved by a straightforward verification. 

Proof  of Theorem 6.1: First observe that R is continuous from L I ( T )  to L°~(~) 

(in fact Ilall = 1). So 

" w E T  " w E T  w E T  

Let u E T. Since p~(7"f~ N 7"/,,,) < p~(~w) = 1 for every vertex w, if f E L 1 we 

h a v e  

w E T  d~' w E T  

therefore by absolute convergence 

: ~ f ( , , , )~v(~  n ~,,,). 
wET 
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If d(v, u) is even, by Lemma 6.3 the last summation is only taken over those 

vertices w E S(v, u) which are at even distance from v. 

Hence 

anf,, R;d.  = 
n : d ( v , u )  e v e n  n :  d ( v , n )  e v e n  wEX(v,u): 

d(v,w) e v e n  

71 

W : d(v,w) e v e n  m = O  

Of course we must  justify the second equality in this last formula. But after doing 

that,  the inversion formula will be completely proved: making use of Lemma 6.3 

and the recursive definition of An, an easy computat ion shows that  for w an even 

distance from v 

Av2r,,#,,(7"(,,2., fl 7(w) = 1 if O, 
m=O 0 i f n  > O. 

The required justification again comes from absolute convergence of the series. 

Fix w at an even distance from v. For 0 < m < n, observe that  q, >_ 2 for 

every u, and that ,  whenever 1 < k < m and a E {0, 1} k is such that  ak = 0, 

we have g(j, a )  < g(j ' ,  a )  if 1 < j < j '  < k. From the closed expression of A,  

in Remark 6.2 we get 

n+rn--1 1 nWrI-1 i ~ 1  
]1" --_< --+ 
.= qv~ i=0 qvi = t~E{0 ,1} l t  l<_i<k 

w i t h  ~ k = O  i#t(1,eO,".,t(k,eO 
m 

_< 2 - ~ - m  + E 2 k - 1 2  - ~ - ~ + ~  _< 21-~+~.  
k=l 

1 
H 

Probably this estimate, or an equivalent one, can also be derived from the recur- 

sire expression of An. From this formula and from Lemma 6.3 we get 

n+m-1 

m----O m = O  i----0 

1 _< >_.] 21-"+m < 4. 
qvi m = 0  

Therefore 

w: d(e,w) e v e n  m----O w: d(v,w) e v e n  
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In the homogeneous case we simply have 

1 i f w = v ,  
A w =  1 - q  if w 7~ v. 

Setting ~(~) = {hv(2n, w): n > O, w E a} ,  the inversion formula becomes 

f(o)= [].. 

(observe that /~v(~(~))  = c¢). 

If T is semi-homogeneous, that  is, if 

q if d(v,u) is even, 
qu = 

p if d(v, u) is odd, 

1 i f w  = v ,  

A~,= 1 - p + ( p - q )  p + ( - 1 ) " p "  i f w # v .  
p + l  
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